

ORIGINAL ARTICLE

Nonviral gene delivery to human ovarian cancer cells using arginine-grafted PAMAM dendrimer

Soo Hyun Jang^{1,2}, Su Jin Choi^{1,2}, Ji Hyun Oh¹, Song Wha Chae¹, Kihoon Nam², Jong Sang Park² and Hwa Jeong Lee¹

¹Division of Life and Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea and ²School of Chemistry and Molecular Engineering, Seoul National University, Seoul, Republic of Korea

Abstract

Background: A specific and effective strategy is in demand to treat ovarian cancer successfully. Epidermal growth factor receptor (EGFR) is highly expressed in ovarian cancer, and thus EGFR antisense gene therapy can be a potential therapeutic strategy. **Method:** L-Arginine-grafted-polyamidoamine dendrimer (PAMAM-Arg) has been reported to be a novel nonviral gene delivery carrier. Therefore, the ability of PAMAM-Arg in transferring a luciferase gene to ovarian carcinoma SK-OV3 cells has been examined, and the cytotoxicity of the cationic polymer has been investigated. In addition, the suppression of cell proliferation has been evaluated by transferring an EGFR antisense gene to SK-OV3 cells using PAMAM-Arg. Polyethyleneimine (PEI) 25K was used as a positive control. **Results:** As a result, in vitro gene transfection efficiency of PAMAM-Arg was enhanced with increasing transfection time and N/P ratios. PAMAM-Arg transferred the luciferase gene into cells more efficiently than PEI. In addition, PAMAM-Arg was minimally toxic to the cells whereas PEI 25K was highly toxic. The polyplexes formed by the EGFR antisense gene and PAMAM-Arg significantly reduced thymidine incorporation into the cells suggesting the suppression of cancer cell proliferation. **Conclusion:** These results suggest that a PAMAM-Arg/EGFR antisense gene complex can be used as a safe and efficient therapeutic agent for cancer gene therapy.

Key words: Antisense gene, cancer gene therapy, epidermal growth factor receptor, L-arginine-grafted-polyamidoamine dendrimer, polyethyleneimine, thymidine incorporation

Introduction

Ovarian cancer is the fifth leading cause of cancer death in women because of the lack of specific symptoms and diagnostic technique¹. Although the development of new chemotherapy regimens has been progressing continually, the efficacy of the available treatment has been limited by adverse reactions, tolerance, and multidrug resistance. Therefore, a specific and effective drug therapy strategy is required for a successful treatment of ovarian cancer².

Epidermal growth factor receptor (EGFR) is related to cell migration, proliferation, and differentiation. Increased EGFR signaling has been linked with tumor invasion, angiogenesis, and metastasis. EGFR is highly expressed in a variety of solid tumors, including ovarian

cancer and breast cancer, and is often associated with poor prognosis and drug resistance in chemotherapy^{3–6}. The downregulation of EGFR resulted in the reduction of cell proliferation, cell-cell attachment, and tumorigenicity⁷. Thus, EGFR antisense gene therapy can be a potential therapeutic strategy for the treatment of ovarian cancer.

Gene therapy is an attractive therapeutic approach for the treatment of hereditary or acquired diseases. However, the lack of safe and efficient gene delivery systems makes their clinical application difficult. During the last decades, viral vectors, such as adenoviruses and retroviruses, have been considered to be promising gene delivery carriers on account of their efficient gene delivery and expression. However, these vectors have been reported to have several problems, such as insertional mutagenesis, immunogenic and inflammatory

¹The first two authors contributed equally to this work.

Address for correspondence: Hwa Jeong Lee, PhD, Division of Life and Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 11-1 Daehyun-dong, Seoul 120-750, Republic of Korea. Tel: +82 2 3277 3409 (O), Fax: +82 2 3277 2851. E-mail: hwalee@ewha.ac.kr

(Received 26 Feb 2010; accepted 26 Apr 2010)

responses, limited loading capacity, and difficulties in large-scale production⁸. Therefore, nonviral vectors, such as cationic lipids or cationic polymers, have recently received increasing attention as gene delivery carriers.

Cationic lipid-DNA complexes (lipoplexes) have relatively high transfection efficiency *in vitro* when locally delivered at low doses⁹. However, their *in vivo* transfection sites are limited to the lung and liver because of their large size, excessive positive charge, and considerable aggregation property^{10,11}. Cationic polymers including poly-L-lysine, polyethyleneimine (PEI), and chitosan have several advantages, such as efficient condensation with DNA and simple formation of a relatively small and stable DNA-polymer complex at low cost^{12,13}. However, their use as an *in vivo* gene delivery vector is limited because of some undesirable characteristics, such as inherent cytotoxicity and relatively low transfection efficiency *in vivo* as compared with viral vectors^{14,15}. Nevertheless, cationic polyamidoamine (PAMAM) has been considered to be a promising gene delivery carrier with modification of the linear structure to dendrimers for enhancing transfection efficiency¹⁶. In addition, the introduction of arginine residues to the PAMAM dendritic surfaces significantly enhanced gene delivery potency compared with native PAMAM, resulting in high transfection efficiency with relatively low toxicity in primary cortical cultures^{17,18}.

In this study, we investigated luciferase gene expression efficiency in human ovarian carcinoma SK-OV3 cells using a cationic arginine-grafted PAMAM dendrimer (PAMAM-Arg). The cytotoxicity of the cationic polymer was also tested in the cells. In addition, the suppression of cell proliferation was examined by transferring the EGFR antisense gene to SK-OV3 cells using PAMAM-Arg.

Materials and methods

Materials

A luciferase assay system was purchased from Promega Co. (Madison, WI, USA). A BCA™ protein assay kit was supplied by Pierce Co. (Rockford, IL, USA) and a QIAfilter plasmid maxi kit was obtained from Qiagen (Hilden, Germany). Ultima-gold scintillation cocktail and [³H]-thymidine (81.7 Ci/mmol) were supplied by Perkin Elmer Life Science (Boston, MA, USA). The SK-OV3 human ovarian adenocarcinoma cell line was obtained from Korea Cell Bank (Seoul, Korea). PAMAM-Arg (Figure 1) was kindly gifted by Professor Jong Sang Park (Seoul National University, Seoul, Korea). Clone 790 and 882 plasmids were generously gifted by Dr. William M. Pardridge (University of California, Los Angeles, CA, USA). Clones 790 and 882 are a luciferase expression pCEP4 plasmid and an antisense hEGFR expression pCEP4 plasmid, respectively^{19,20}. All other reagents were of analytical grade.

Plasmid preparation

Escherichia coli transformed with plasmid DNA was cultured in Luria-Bertani broth medium with 100 µg/mL ampicillin for 16–18 hours at 37°C. Plasmid DNA was purified by the QIAfilter plasmid maxi kit and dissolved in Tris-EDTA buffer. Plasmid DNA concentration was determined by the measurement of UV absorbance at 260 nm. The purity of plasmid DNA was evaluated by measuring the absorbance at 260 nm (A_{260}) and at 280 nm (A_{280}). The ratio of A_{260} to A_{280} was over 1.8.

In vitro transfection assay

SK-OV3 cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), penicillin, and streptomycin at 37°C in a humidified atmosphere containing 5% CO₂/95% air. The cells were seeded at a density of 1.0×10^5 cells per each well and grown in the medium for 24 hours at 37°C. The polyplexes were formed with plasmid DNA (clone 790) and PAMAM-Arg at various N/P ratios (the molar ratios of the amine groups of PAMAM-Arg to the phosphate groups of DNA: 0/1, 4/1, 6/1, and 8/1) for 30 minutes at room temperature. The amount of plasmid DNA used was fixed at 1 µg at each N/P ratio. Following incubation in serum-free medium for 4 and 8 hours, the cells were incubated in the medium containing 10% FBS for 48 hours. The cells were also treated with polyplexes at an N/P ratio of 6/1 for 1, 2, 4, 6, and 8 hours. PEI 25K was used as a positive control. Transfection efficiency was determined by the measurement of luciferase activity using a MicroLumat Plus Luminometer (Berthold Technologies, Bad Wildbad, Germany), which was normalized by the protein concentration.

In vitro cytotoxicity assay

SK-OV3 cells were grown at a density of 1.0×10^5 cells per well in the medium for 24 hours at 37°C. The cells were treated with the cationic polymer over a concentration range of 0.225–0.459 mg/mL in serum-free medium for 4 and 8 hours. Then, the cells were incubated in the medium containing 10% FBS for 48 hours. Moreover, the cells were treated with PEI 25K of a concentration range between 0.122 and 0.243 mg/mL for 4 and 8 hours. In vitro cytotoxicity was examined using a sulforhodamine B assay²¹.

Thymidine incorporation in SK-OV3 cells

SK-OV3 cells were cultured at a density of 1.0×10^5 cells per well in the medium for 24 hours at 37°C. The cells were treated with polyplexes of clone 882 plasmid DNA and PAMAM-Arg formed at an N/P ratio of 8/1 for 8 hours at 37°C. The cells were then incubated in the medium containing 10% FBS for an additional 24 hours. A final concentration of 2 µCi/mL [³H]-thymidine and 10 µM unlabeled thymidine was added to each well, followed by the incubation of the cells at 37°C for 24, 48, and 72 hours. The cells were fixed with 10% trichloroacetic

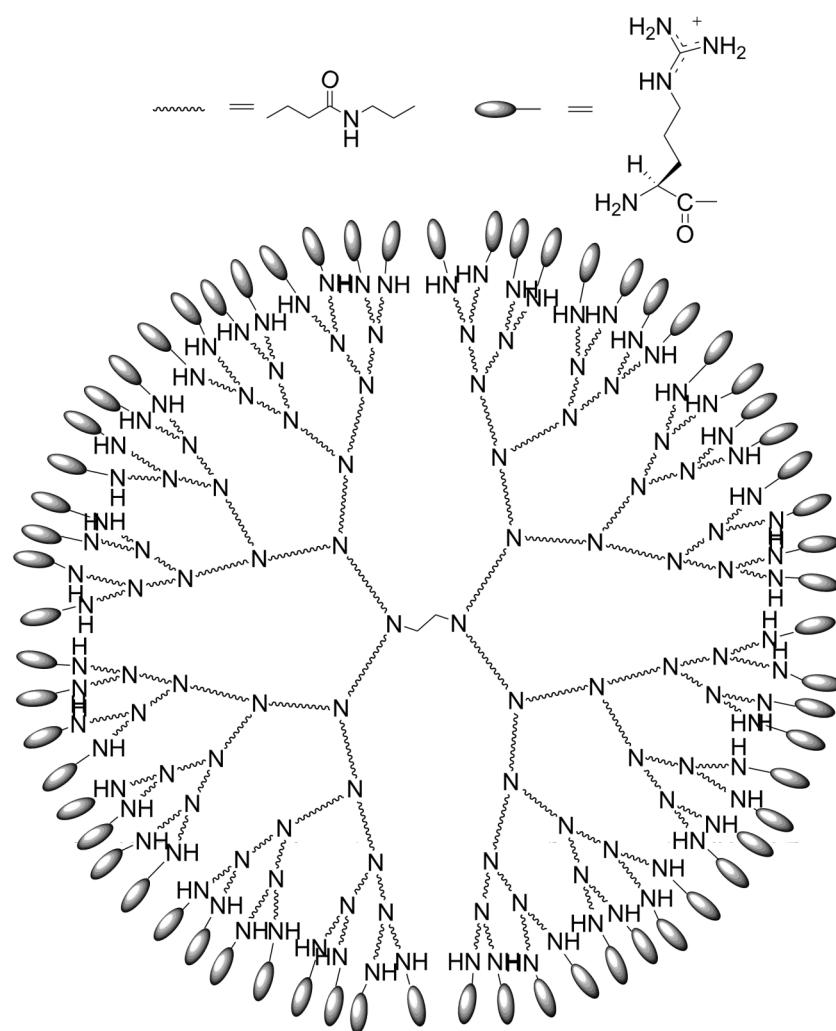


Figure 1. Chemical structure of L-arginine-grafted-polyamidoamine dendrimer (PAMAM-Arg).

acid (TCA) on ice for 10 minutes and centrifuged for 60 seconds. After the removal of the TCA supernatant, 0.5 mL of 1 N NaOH-0.25% SDS was put into the pellet and mixed thoroughly. Subsequently, the pellet was heated for 30 minutes at 60°C, and 350 μ L of the solubilized cell solution was analyzed for 3 H-radioactivity using a liquid scintillation counter, LS2000 (Beckman Instrument Co., Fullerton, CA, USA)²⁰.

Statistical analysis

All the data were presented as mean \pm SD, unless stated otherwise. The data were compared by one-way ANOVA followed by a Tukey's test among more than two groups and by unpaired Student's *t*-test between two groups. The differences were considered to be statistically significant when the *P* value was less than 0.05.

Results and discussion

Gene therapy with antisense technology has been considered to be an innovative and fundamental method

to treat numerous cancers²². Because EGFR is highly expressed in ovarian cancer and often associated with poor prognosis³⁻⁶, EGFR antisense gene therapy can be a novel therapeutic strategy for the treatment of ovarian cancer.

Among various cationic polymers, PEI has been reported as a potential nonviral vector for gene delivery. PEI has intrinsic endosome-buffering capacity, that is, this polymer can capture protons in acidic endosomal compartments, cause osmotic disruption of the endosome, and release DNA into cytosol^{23,24}. PEI showed remarkable transfection properties in *in vitro* and *in vivo* studies suggesting a possibility of clinical application in human bladder cancer therapy^{23,25}. Nevertheless, the toxicity of PEI such as inherent cytotoxicity, erythrocyte aggregation, and acute lung embolism has restricted its use as a gene delivery carrier for clinical therapy^{24,26}.

As shown in Figure 2, PAMAM-Arg showed a several-fold increase in reporter gene transfection efficiency as compared with PEI, a positive control, except for the N/P ratio of 4/1 after 8 hours incubation. Luciferase activity

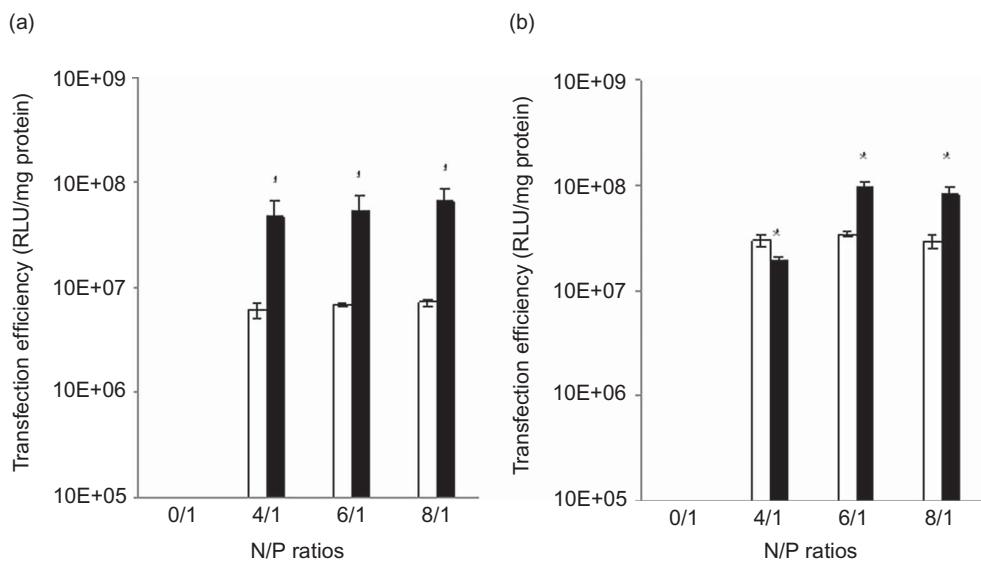


Figure 2. Dose-dependent transfection efficiency of PAMAM-Arg (black bar) and PEI 25K (white bar) in SK-OV3 cells after (a) 4- and (b) 8-hour incubation. The cells were transfected with polyplexes at various N/P ratios. Each bar represents the mean \pm SD ($n = 3$). * $P < 0.05$ compared with PEI 25K.

was increased with increasing N/P ratio up to 6/1 and reached a plateau. In addition, in vitro gene transfection efficiency was augmented with increasing incubation time and reached a plateau after 6 hours of incubation (Figure 3). PAMAM dendrimers, a new class of highly branched spherical polymers, have been reported to have high aqueous solubility, transfection efficiency, safety, and stability of complexes with DNA²⁷. In particular, PAMAM-Arg used in this investigation is a cationic arginine-grafted PAMAM dendrimer in which arginine residues were coupled to the surfaces of PAMAM dendrimers¹⁷. PAMAM-Arg showed significantly greater transfection efficiencies in primary cortical cultures in the presence or absence of serum, as compared with

PEI, lipofectamine, and native PAMAM¹⁸, which was consistent with our findings.

It has been reported that the toxicity of cationic polymers can be produced by the interaction between the polymers and cell membranes and is related to the efficiency of cellular uptake^{28,29}. The cytotoxicity of gene delivery carriers is one of the major obstacles for its application. As presented in Figure 4, PAMAM-Arg showed almost no in vitro cytotoxicity against the SK-OV3 cells up to the concentration of 0.459 mg/mL (N/P ratio of 8/1) for 4- and 8-hour incubation periods. In the

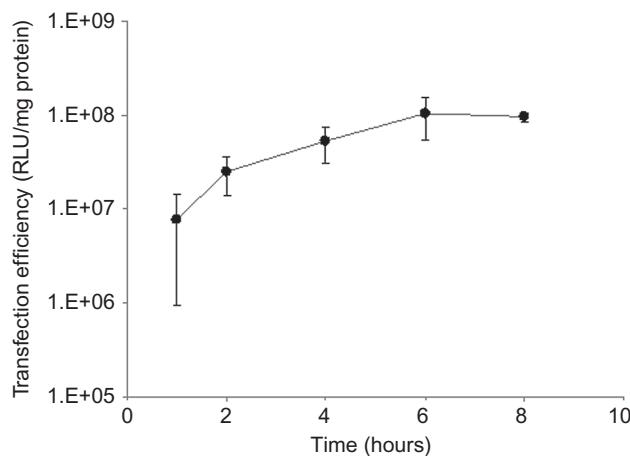


Figure 3. Time-dependent transfection efficiency of PAMAM-Arg in SK-OV3 cells. The cells were transfected with polyplexes at an N/P ratio of 6/1. Each data point represents the mean \pm SD ($n = 3$).

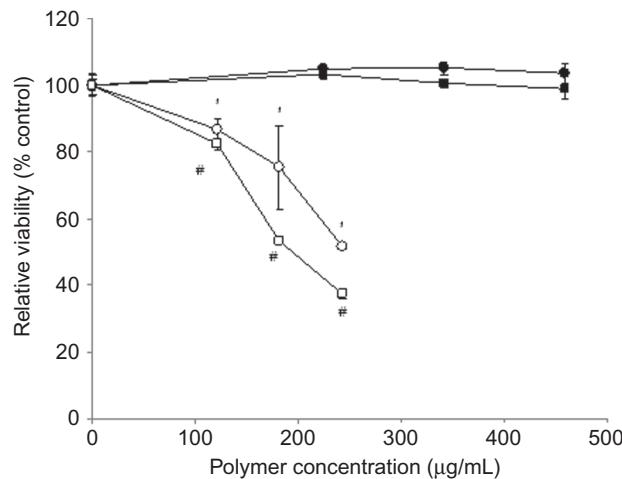


Figure 4. Cytotoxic effect of PAMAM-Arg (●, 4-hour incubation; ■, 8-hour incubation) and PEI 25K (○, 4-hour incubation; □, 8-hour incubation) in SK-OV3 cells. Cell viability was determined by a sulforhodamine B staining assay. Each data point represents the mean \pm SD ($n = 3$). * $P < 0.05$ compared with PAMAM-Arg for 4-hour incubation, # $P < 0.05$ compared with PAMAM-Arg for 8-hour incubation.

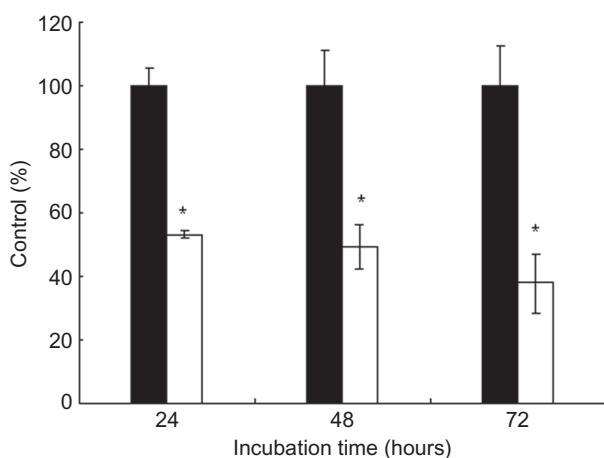


Figure 5. Inhibition of thymidine incorporation by polyplexes at an N/P ratio of 8/1 (white bar) in SK-OV3 cells. Each bar represents the mean \pm SD ($n = 3$). * $P < 0.05$ compared with control (plasmid DNA only; black bar).

case of PEI 25K, approximately 48.4% and 62.6% reductions in cell viability were observed at 0.243 mg/mL (N/P ratio of 8/1) after 4 and 8 hours of incubations, respectively. Therefore, PAMAM-Arg may possess advantages over PEI because of higher or comparable gene transfection efficiency and much lower toxicity.

To examine the potential of PAMAM-Arg-mediated antisense gene delivery to ovarian cancer, thymidine incorporation assay was performed using a clone 882 plasmid. Clone 882 is a plasmid encoding for hEGFR antisense mRNA¹⁹. When SK-OV3 cells were transfected with clone 882 plasmid/PAMAM-Arg complexes at an N/P ratio of 8/1 for 8 hours, there was more than a 60% reduction in the thymidine incorporation into the cells after 72-hour incubation ($P < 0.05$), suggesting the suppression of cancer cell proliferation (Figure 5). Our results suggest that a PAMAM-Arg-EGFR antisense gene complex may be used as a potential therapeutic agent for the treatment of ovarian cancer with high efficacy and safety. In addition, these in vitro results are required to be confirmed in vivo in xenograft animal models in the future study.

Conclusions

PAMAM-Arg transferred the luciferase gene into ovarian cancer cells efficiently without cytotoxicity. The polyplexes formed by the EGFR antisense gene and PAMAM-Arg suppressed cancer cell proliferation successfully. These observations suggest that a PAMAM-Arg-EGFR antisense gene complex can be used as a safe and efficient therapeutic agent for cancer gene therapy.

Declaration of interest

This work was supported by the second stage of Brain Korea 21 program, the National Research Foundation

(NRF) of Korea Grant funded by the Korean Government (2007-0055790), and grant No. R15-2006-020 from the National Core Research Center (NCRC) program of the Ministry of Education, Science & Technology (MEST), and the NRF of Korea through the Center for Cell Signaling & Drug Discovery Research at Ewha Womans University. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

References

- Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. (2006). Cancer statistics, 2006. *Cancer J Clin*, 56:106-30.
- DiSaia PJ, Blosz JD. (2003). Treatment of ovarian cancer: New strategies. *Gynecol Oncol*, 90:S24-32.
- Bartlett JM, Langdon SP, Simpson BJ. (1996). The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. *Br J Cancer*, 73:301-6.
- Nicholson RI, Gee JM, Harper ME. (2001). EGFR and cancer prognosis. *Eur J Cancer*, 37(Suppl. 4):S9-15.
- Ranson M. (2002). ZD1839 (Iressa): For more than just non-small cell lung cancer. *Oncologist*, 7(Suppl. 4):16-24.
- Raymond E, Faivre S, Armand JP. (2000). Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. *Drugs*, 60(Suppl. 1):15-23.
- Alper O, Bergmann-Leitner ES, Bennett TA, Hacker NF, Stromberg K, Stetler-Stevenson WG. (2001). Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. *J Natl Cancer Inst*, 93:1375-84.
- Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM. (2005). Cross-linked small polyethylenimines: While still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. *Pharm Res*, 22:373-80.
- Li S, Huang L. (2000). Nonviral gene therapy: Promises and challenges. *Gene Ther*, 7:31-4.
- Huang L, Li S. (1997). Liposomal gene delivery: A complex package. *Nat Biotechnol*, 15:620-1.
- Schatzlein AG. (2001). Non-viral vectors in cancer gene therapy: Principles and progress. *Anticancer Drug*, 2:275-304.
- Lollo CP, Banaszczyk MG, Chiou HC. (2000). Obstacles and advances in non-viral gene delivery. *Curr Opin Mol Ther*, 2:136-42.
- Malhotra M, Kulamarva A, Sebak S, Paul A, Bhathena J, Mirzaei M, et al. (2009). Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. *Drug Dev Ind Pharm*, 35:719-26.
- Pouton CW, Seymour LW. (2001). Key issues in non-viral gene delivery. *Adv Drug Deliv Rev*, 46:187-203.
- Schmidt-Wolf GD, Schmidt-Wolf IG. (2003). Non-viral and hybrid vectors in human gene therapy: An update. *Trends Mol Med*, 9:67-72.
- Heansler J, Szoka FC. (1997). A CD2/CD28 chimeric receptor triggers the CD28 signaling pathway in CTLL.2 cells. *Gene Ther*, 4:823-32.
- Choi JS, Nam K, Park J, Kim JB, Lee JK, Park J. (2004). Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. *J Control Release*, 99:445-56.
- Kim JB, Choi JS, Nam K, Lee M, Park JS, Lee JK. (2006). Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. *J Control Release*, 10:110-7.
- Boado RJ, Pardridge WM. (1998). Ten nucleotide cis element in the 3'-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. *Mol Brain Res*, 59:109-13.
- Zhang Y, Lee HJ, Boado RJ, Pardridge WM. (2002). Receptor-mediated delivery of an antisense gene to human brain cancer cells. *J Gene Med*, 4:183-94.
- Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. *J Natl Cancer Inst*, 82:1107-12.

22. Favaro E, Indraccolo S. (2007). Gene therapy of cancer in the clinic: Good news in sight from Asia? *Curr Opin Mol Ther*, 9:477-82.
23. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. *Proc Natl Acad Sci U S A*, 92:7297-301.
24. Kichler A. (2004). Gene transfer with modified polyethylenimines. *J Gene Med*, 6:S3-10.
25. Ohana P, Bibi O, Matouk I, Levy C, Birman T, Ariel I, et al. (2002). Use of H19 regulatory sequences for targeted gene therapy in cancer. *Int J Cancer*, 98:645-50.
26. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. (1999). PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. *Gene Ther*, 6:595-605.
27. Zhong H, He ZG, Li Z, Li GY, Shen SR, Li XL. (2008). Studies on polyamidoamine dendrimers as efficient gene delivery vector. *J Biomater Appl*, 22:527-44.
28. Fischer D, Li Y, Ahlemeyer B, Kriegstein J, Kissel T. (2003). In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. *Biomaterials*, 24:1121-34.
29. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D'Emanuele A. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. *Int J Pharm*, 252:263-6.

Copyright of Drug Development & Industrial Pharmacy is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.